BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 52 (10), 3127—3128 (1979)

A New Triterpene Glucoside from *Terminalia arjuna*. Arjunglucoside III

Takahiko Tsuyuki, Yuriko Hamada, Tadashi Honda, Takeyoshi Таканаsні,* and Kazuhiro Matsushita**

Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

**Application Center, Scientific Instrument Project, JEOL Ltd., Nakagami, Akishima, Tokyo 196

(Received April 24, 1979)

Synopsis. The structure of a new triterpene glucoside, arjunglucoside III, isolated from *Terminalia arjuna* was found to be β -D-glucopyranosyl $2\alpha,3\beta,19\alpha$ -trihydroxy-11-oxoolean-12-en-28-oate.

The isolation and structure determination of sitosterol, ellagic acid, D-(+)-mannitol, (+)-leucocyanidin, (+)-leucodelphinidin, oleanolic acid, arjunic acid (1), arjunolic acid (2), and arjunetin (3) from Terminalia arjuna have been reported. In a previous paper, are port was given on three new constituents, arjungenin (4) and arjunglucosides I (5) and II (6) from the bark of plant. We describe the structure determination of a minor glucoside, arjunglucoside III (7), isolated from the same plant.

Arjunglucoside III (7) was obtained from the methanol extract of the bark of Terminalia arjuna in ca. 0.01% yield based on the bark. Crystallization from methanol gave a crystal, mp 241.5—243.5 °C, [α]_b +4.8°; UV λ_{max} 255.5 nm (ε 9600). The ¹³C NMR spectra of arjunglucoside III (7) together with those of arjunetin (3) and arjunglucoside II (6) are given in Table 1. The results led to the proposal^{4,5}) that the structure of arjunglucoside III (7) can be formulated as glucopyranosyl 2,3,19-trihydroxy-11-oxoolean-12-en-28-oate.

The ¹³C NMR spectrum of methyl 3β -acetoxy-11-oxoolean-12-en-29-oate shows its C-9 signal at δ 61.9, C-11 signal at δ 200.2, and C-12 signal at δ 128.9, while that of the corresponding 11-deoxo derivative, methyl 3β -acetoxyolean-12-en-29-oate shows its C-9 signal at δ 47.7, C-11 signal at δ 23.6, and C-12 signal at δ 123.0.5) The ¹³C NMR and UV spectra strongly suggest the 11-oxoolean-12-ene structure for arjunglucoside III (7); this was confirmed by the following evidence.

Arjunglucoside III (7) was treated with acetic anhydride in pyridine to afford an acetate (8), mp

Table 1. Carbon-13 chemical shifts $\delta_{\bf c}$ of arjunglucoside III (7) arjunetin (3), and arjunglucoside II (6)

Carbon 7 number		3	6	Carbo numb	- 1	3	6
C-1	48.3	47.5	46.9	C-19	80.3	80.9	46.1
C-2	68.3	68.5	68.8	C-20	35.6	35.5	30.7
C-3	83.4	83.7	78.2	C-21	28.3	29.9	34.0
C-4	39.9	39.8	43.5	C-22	32.1	32.1	32.5
C-5	55.6	55.9	48.1	C-23	28.7	28.7	66.6
C-6	17.9	19.0	18.5	C-24	17.5	16.8	14.2
C-7	33.4	32.9	32.8	C-25	17.9	17.5	17.5
C -8	44.5	39.8	40.0	C-26	19.6	17.5	17.4
C-9	62.6	48.3	47.6	C-27	24.3	28.9	26.0
C-10	38.9	38.6	38.4	C-28	176.7	177.1	176.3
C-11	200.1	24.2	23.9	C-29	29.2	29.9	33.0
C-12	129.0	123.4	122.8	C-30	22.9	24.6	23.6
C-13	170.7	144.2	144.0	C-1'	95.9	95.7	95.6
C-14	45.9	42.1	42.2	C-2'	74.0	74.0	74.0
C-15	28.3	29.2	28.1	C-3'	79.2	79.1	79.0
C-16	27.6	24.9	23.3	C-4'	71.0	71.0	71.1
C-17	46.6	46.3	48.0	C-5'	78.7	78.7	78.7
C-18	45.5	44.5	41.7	C-6′	62.1	62.1	62.2

¹³C FT NMR spectra were measured with a JEOL FX-100 spectrometer at 25.05 MHz using pyridine- d_5 solutions (ca. 100 mg/cm³) in 10 mm o.d. egg-shape cells. FT conditions: spectral width, 5 kHz; pulse flipping angle, 60°; pulse repetition time, 1.0 s; number of data points, 4 K; number of transients, 5 K—40 K. Chemical shifts are expressed by δ (ppm downfield from internal TMS).

272—275 °C, UV λ_{max} 250 nm (ϵ 11500). The mass spectrum showed a molecular ion peak at m/e 916 and a base peak at m/e 331. The molecular ion peak together with elemental analysis led to the molecular formula, C₄₈H₆₈O₁₇, the base peak due to a fragment ion (9)⁶⁾ suggesting the presence of a glucosyl moiety in the molecule. The ¹H NMR spectrum showed the presence of seven tertiary methyls, two acetoxyls, an α -proton (at C-9) adjacent to the carbonyl group, an allylic proton (at C-18 β), and a proton attached to a carbon atom (C-19) bearing a hydroxyl group (the presence of which was supported by the IR spectrum at 3540 cm⁻¹), besides a tetra-O-acetyl-D-glucopyranosyl moiety (cf. Experimental). The acetate (8), on oxidation with the Collins reagent, 7) gave an oxidation product (10), mp 215—218 °C, which was found to be identical with the 11,19-dioxoolean-12-ene derivative obtained by the same oxidation reaction of known arjunetin hexaacetate (11), tetra-O-acetyl- β -D-glucopyranosyl $2\alpha,3\beta$ -diacetoxy- 19α -hydroxyolean-12-en-28-oate. $^{1,3)}$ Arjunglucoside III should be β -D-glucopyranosyl $2\alpha,3\beta,19\xi$ -trihydroxy-11-oxoolean-12-en-28-oate.

Since the tetra-O-acetyl-D-glucopyranosyl group preferentially exists as C1 form, the ¹H NMR spectrum of the hexacetate (8) $(J_{1',2'}=8 \text{ Hz})$ provides support for the presence of a β -glucosyl linkage in the molecule.⁸⁾ The α -orientation of the hydroxyl group at C-19 was suggested from the ¹H NMR spectrum of the acetate (8), which showed a broad signal $(W_{1/2} \ 6 \ \text{Hz})$ at $\delta \ 3.20$ due to a proton on C-18 $(\beta$ -axial) and a triplet-like signal $(W_{1/2} \ 6 \ \text{Hz})$ at $\delta \ 3.47 \ (\beta$ -equatorial) due to a proton on C-19. The values are in good accord with those of 18β - and 19β -protons of arjunetin hexacetate (11) and arjungenin methyl ester triacetate,^{3,9)} suggesting the α (axial)-orientation of the hydroxyl group of arjunglucoside III (7).

In conclusion, the structure of arjunglucoside III (7) is β -D-glucopyranosyl $2\alpha,3\beta,19\alpha$ -trihydroxy-11-oxo-olean-12-en-28-oate.

Experimental

The general procedure is the same as described in a previous paper³⁾ except UV measurement, which was carried out on a Hitachi 340 spectrometer. High resolution mass spectrum was taken on a JEOL JMS-D300 mass spectrometer.

Isolation of Arjunglucoside III (7). The bark (1.5 kg) of Terminalia arjuna was pulverized and extracted with methanol (81) for 10 days. The methanol extract afforded a residue (10.5 g), which was subjected to separation by column chromatography on silica gel (500 g). Elution was carried out with chloroform containing methanol of the following concentration: frs 1—13, 2%, each 200 ml; frs 14—17, 4%, each 250 ml; frs 18 and 19, 6%, each 500 ml; frs 20-24, 8%, each 200 ml; frs 25-30, 10%, each 200 ml; frs 31-35, 12%, each 160 ml; frs 36—43, 14%, each 200 ml; frs 44—51, 16%, each 200 ml; frs 52-60, 18%, each 160 ml. After arjunic acid (1), arjunolic acid (2), and arjungenin (4) had been eluted, arjunetin (3; 2.4 g) was eluted in frs 41-49 and a mixture (102 mg) of arjunctin (3) and arjunglucoside III (7) was eluted in fr 50. Fr 51 mainly consisted of arjunglucoside III (7; 96 mg) and frs 52-58 afforded arjunglucoside II (6; 1.4 g). The mixture containing arjunglucoside III (7) was subjected to separation by column chromatography under the same conditions as above to give additional arjunglucoside III (7; ca. 20 mg). Two crops of crude arjunglucoside III were combined and purified by crystallization from methanol to give 64 mg of arjunglucoside III (7), mp 241.5—243.5 °C (with decomposition); $[\alpha]_D^{19} + 4.8^\circ$ (c 0.83, C_2H_5OH); IR (Nujol) 3380, 1725, and 1630 cm⁻¹; UV (C_2H_5OH) λ_{max} 255.5 nm (ε 9600); ¹³C NMR (Table 1); MS m/e 470, 455, 410, 395, and 69 (base peak) (no molecular ion peak was observed), characterized as its hexaacetate (8).

Acetylation of Arjunglucoside III (7). Arjunglucoside III (7; 45 mg) was treated with acetic anhydride (0.2 ml) and pyridine (0.2 ml) at room temperature overnight. After the usual treatment, crystallization from ethanol gave arjunglucoside III hexaacetate (8; 42 mg), mp 272—275 °C; $[\alpha]_{0}^{\infty}$ +12.6° (ϵ 1.9, CHCl₃); IR (Nujol) 3540, 1765, 1755, 1730, 1660, and 1240 cm⁻¹; UV (CHCl₃) λ_{\max} 250 nm (ϵ 11500); ¹H NMR (100 MHz) δ (CDCl₃) 0.92 (6H, s), 0.96, 1.25 (each 3H, s), 0.99 (9H, s), 1.99 (3H, s), 2.05 (9H, s), 2.08 (6H, s), 2.55 (1H, s), 3.20 (1H, br s), 3.47 (1H, t-like, $W_{1/2}$

6 Hz), 3.82 (1H, m), 4.06 (1H, as A part of ABX-system, $J_{6',6'}=12$ and $J_{5',6'}=2$ Hz), 4.32 (1H, as B part of ABX-system, $J_{6',6'}=12$ and $J_{5',6'}=4$ Hz), 4.74 (1H, d, $J_{2\beta,3\alpha}=10$ Hz), 5.20 (4H, m), 5.62 (1H, d, $J_{1',2'}=8$ Hz), and 5.77 (1H, s); MS m/e 916 (M⁺), 856, 796, 649, 483, 465, 335, 331 (base peak), 271, and 169; Found: C, 62.76; H, 7.62%. Calcd for $C_{48}H_{68}O_{17}$: C, 62.87; H, 7.47%.

Oxidation of Arjunglucoside III Hexaacetate (8). Chromium trioxide (160 mg) was added to a mixture of pyridine (0.4 ml) and dichloromethane (4 ml) with stirring for 15 min.⁷ To the solution was added arjunglucoside III hexaacetate (8; 28 mg) in dichloromethane (0.3 ml) and the reaction mixture was stirred at room temperature for 1.5 h. The usual treatment and crystallization from ethanol gave tetra-O-acetyl- β -D-glucopyranosyl 2α , 3β -diacetoxy-11,19-dioxoolean-12-en-28-oate (10; ca. 20 mg), as white needles, mp 215—218 °C; $[\alpha]_D^{23} + 21^\circ$ (c 0.85, CHCl₃); the IR, UV, ¹H NMR, and MS spectra were identical with those of the sample prepared from arjunetin hexaacetate (11).

Oxidation of Arjunetin Hexaacetate (11). Arjunetin hexaacetate1,3) (11; 36 mg, mp 233.5-235.5 °C) was oxidized with the Collins reagent according to the same procedure as above. The reaction product was crystallized from ethanol to give tetra-O-acetyl-β-D-glucopyranosyl 2α,3β-diacetoxy-11,19-dioxoolean-12-en-28-oate (10; ca. 20 mg) as white needles, mp 215—218 °C; $[\alpha]_{D}^{23}$ +13° (c 0.93, CHCl₃); IR (Nujol) 1760, 1750, 1712, 1663, and 1230 cm⁻¹; UV (CHCl₃) λ_{max} 246 nm (ε 8300); ¹H NMR (100 MHz) δ (CDCl₃) 0.92 (9H, s), 1.17, 1.25 (each 3H, s), 1.22 (6H, s), 1.99 (3H, s), 2.02 (9H, s), 2.08 (6H, s), 2.53 (1H, s), 3.82 (1H, m), 4.06 (1H, as A part of ABX-system, $J_{6',6'}=12$ and $J_{5',6'}=2$ Hz), 4.30 (1H, as B part of ABX-system, $J_{6',6'}=12$ and $J_{5',6'}=4$ Hz), 4.72 (1H, d, $J_{2\beta,3\alpha} = 10 \text{ Hz}$), 5.23 (4H, m), 5.60 (1H, s), and 5.68 (1H, d, $J_{1',2'}=8$ Hz); MS m/e 914 (M⁺), 854, 794, 647, and 522; Found: m/e 914.4162. Calcd for $C_{48}H_{66}O_{17}$: M 914.4298; Found: C, 62.40; H, 7.22%. Calcd for C₄₈H₆₆O₁₇·1/2 H₂O: C, 62.39; H, 7.31%.

The authors wish to express their thanks to Dr. Kazuo Tori, Shionogi Research Laboratory, for his helpful discussion.

References

- 1) L. R. Row, P. S. Murty, G. S. R. S. Rao, C. S. P. Sastry, and K. V. J. Rao, *Indian J. Chem.*, **8**, 716, 772 (1970); L. R. Row and G. S. R. S. Rao, *J. Indian Chem. Soc.*, **39**, 89 (1962).
- 2) F. E. King, T. J. King, and J. M. Ross, *J. Chem. Soc.*, **1954**, 3995.
- 3) T. Honda, T. Murae, T. Tsuyuki, T. Takahashi, and M. Sawai, Bull. Chem. Soc. Jpn., 49, 3213 (1976).
- 4) S. Seo, Y. Tomita, and K. Tori, J. Chem. Soc., Chem. Commun., 1975, 954.
- 5) G. S. Ricca, B. Danieli, and G. Palmisano, *Org. Magn. Reson.*, **11**, 163 (1978); H. Duddeck and M. H. A. Elgamal, *ibid.*, **11**, 130 (1978).
- 6) K. Biemann, D. C. DeJongh, and H. K. Schnoes, J. Am. Chem. Soc., 85, 1763 (1963).
- 7) R. Ratcliffe and R. Rodehorst, J. Org. Chem., **35**, 4000 (1970).
- 8) R. U. Lemieux, R. K. Kulling, H. J. Bernstein, and W. G. Schneider, J. Am. Chem. Soc., **80**, 6098 (1958).
- 9) Cf. D. H. R. Barton, N. J. Holness, K. H. Overton, and W. J. Rosenfelder, J. Chem. Soc., 1952, 3751; R. T. Aplin, W. H. Hui, C. T. Ho, and C. W. Yee, J. Chem. Soc., C, 1971, 1067.